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SUMMARY

A direct solution procedure for computing the flutter Mach number and the
flutter frequency is applied to the aeroelastic analysis of propfans using a
finite element structural model and an unsteady aerodynamic model based on a
three-dimensional subsonic compressible 1ifting surface theory. An approxi-
mation to the Jacobian matrix that improves the efficiency of the iterative
process is presented. The Jacobian matrix is indirectly approximated from
approximate derivatives of the flutter matrix. Examples are used to illus-
trate the convergence properties. The direct solution procedure facilitates
the automated flutter analysis in addition to contributing to the efficient
use of computer time as well as the analyst's time.

INTRODUCTION

Flutter of propfans and other types of turbomachinery blading is an impor-
tant phenomenon that has generated considerable interest. Flutter prevention
has been a significant factor in the design of propfan blades. Flutter preven-
tion is also significant for turbomachinery, particularly for unshrouded
blades. As a result, a comprehensive flutter analysis procedure for rotating
blade systems incorporating general mistuning and three dimensional subsonic
aerodynamics is being developed at the NASA Lewis Research Center (refs. 1
to 3).

Research on the aerocelastic behavior of propfans has progressed from both
the structural and the aerodynamic viewpoints. Because of the complex geome-
try of the propfan, structural modeling has shifted from an initial beam model
(ref. 4) to advanced finite element models (refs. 2, 3, 5, and 6). Aerody-
namic models evolved from two-dimensional 1ifting line theory (refs. 2 and 7)
to three-dimensional 1ifting surface theory (ref. 8). Development of aerody-
namic models with supersonic, transonic, and separated flow effects is also a
continuing effort at present. Aeroelastic analysis of propfans (refs. 2 to 5
and 9) has kept pace with developments in structural and aerodynamic modeling.
Comparisons with experimental data (refs. 2, 3, and 10) have resulted in rea-
sonable confidence in analytical predictions.
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With the recent advances in computer technology, automated design of prop-
fan and turbomachinery blades using optimization techniques has become practi-
cal. Efforts in this direction have already begun (refs. 11 to 15). Design
optimization employing flutter constraints requires repeated solution of the
aeroelastic equations of motion to obtain the flutter parameters as the design
is updated. For the optimization to be performed in a realistic period of
time, an automated flutter analysis capability is essential. It is also desir-
able for the analysis to be computationally efficient in order to keep the cen-
tral processing unit (CPU) time and the turnaround time within reasonable
limits.

The conventional flutter analysis procedure, based on the k-method
(ref. 16), casts the equations of motion as a complex linear eigenvalue prob-
Tem where the real and imaginary parts of the eigenvalue are the effective
damping and frequency respectively of the aeroelastic system. The solution
consists of an inner-outer iteration loop to obtain the flutter Mach number and
frequency. The inner iteration loop matches the assumed frequency to the cal-
culated frequency while the outer loop iterates on the Mach number to obtain a
zero effective damping.

A stumbling block in the development of a reliable automated procedure has
been the need to track several eigenvalues through possible crossovers. Previ-
ous efforts in the development of automated flutter analysis procedures for
fixed wings attempted to overcome this difficulty in two ways. One was to use
eigenvalue derivative information to predict the crossovers and then keep track
of them during the iteration (refs. 17 and 18). Apart from being cumbersome,
this procedure required the derivatives of the aerodynamic force coefficients
with respect to Mach number and assumed frequency. The other development was
to use an accurate approximation to the eigenvalue which would retain the con-
tinuity of the eigenvalues over the desired range of Mach number and assumed
frequency (ref. 19). This latter method is susceptible to the accuracy and
the reliability of the approximation over a wide range and requires careful
monitoring. 1In addition, the inner-outer iteration loop in the conventional
procedure is computationally expensive. The inner loop involves the computa-
tion of the matrix of aerodynamic coefficients and the solution of a complex
eigenvalue problem. This can degrade efficiency, particularly for problems in-
volving structural and/or aerodynamic mistuning.

The present work explores an efficient and automated procedure which
replaces the costly inner-outer double iteration loop with a single iteration
loop. The need to track the eigenvalues is also avoided. This is accom-
plished by viewing the flutter problem as a complex implicit double eigenvalue
problem and directly solving for the flutter Mach number and the flutter fre-
quency by a quasi-Newton determinant iteration. The flutter eigenvalues are
never calculated and the avoidance of eigenvalue tracking makes true automa-
tion possible. An accurate approximation to the Jacobian matrix which makes
the iterative process very efficient is a new feature of the present procedure.
The proposed procedure is tested by applying it to the flutter analysis of a
propfan model at a number of rotational speeds.

While the idea of direct solution of the flutter equation is not new
(refs. 16, 20, and 21), it has not been very popular. One reason may be that
the alternative solution, involving flutter eigenvalues, has more physical
appeal. However, the imperatives of automating the flutter analysis and reduc-
ing the computational expense of an inner-outer iteration loop make the direct




solution more attractive. Some previous applications of direct solution of
flutter equations by determinant iteration considered highly simplified aerody-
namic models. No results are available on the convergence and efficiency of
the direct solution procedure considering more complex models such as kernel
function aerodynamics, the computational expense of which makes such issues
paramount. One of the objectives of this paper is to provide such results.

The present procedure also improves upon the previously published direct
solution techniques of Hassig (ref. 16) and Cardani and Mantegazza (ref. 21).
Hassig (ref. 16) uses a secant-based determinant iteration to obtain the
matched flutter frequency and approximate subcritical rate of decay whereas
the present procedure obtains both the matched flutter Mach number and the
matched flutter frequency by a more efficient implementation of determinant
iteration. Cardani and Mantegazza (ref. 21) solve the full set of nonlinear
equations of motion without using determinant iteration to obtain the matched
values of flutter Mach number, flutter frequency and the flutter mode simulta-
neously. In the procedure developed here, only two nonlinear equations are
solved to obtain the flutter point and the flutter mode is obtained very effi-
ciently with the information available from the final iteration. The Jacobian
approximation and the direct solution procedure presented here are applicable
to any aeroelastic stability analysis, including fixed wing, in a straightfor-
ward manner. The Jacobian approximation is also generally applicable to deter-
minant iteration in any application.

NOMENCLATURE
[A] generalized aerodynamic force matrix
[B] system flutter matrix
D system flutter determinant
DR real part of the flutter determinant
D1 imaginary part of the flutter determinant
[Jk] Jacobian matrix
k counter used in determinant iteration

[Kg1] generalized stiffness matrix
M Mach number

MF flutter Mach number

Mg] generalized mass matrix

AMy ME(k-1) - MF(k)

{ap} flutter mode of vibration

{q} generalized coordinate vector



t time

Bo.75r blade setting angle at three-quarter radius

Awy OF(k-1) - ®WF(k)

or r-th inter-group phase angle

Q rotational speed of the propfan
w frequency of vibration

Wf flutter frequency

FORMULATION OF THE FLUTTER ANALYSIS PROBLEM

The computational procedure to be presented is applied to the analytical
formulation described in detail in references 2 and 3. This formulation is
applicable to the flutter analysis of a single rotor propfan containing an
arbitrary number of blades rotating at a fixed speed in an axial flow. The
structure is modeled by finite elements. The aerodynamic model (ref. 8) is
based on a three-dimensional subsonic compressible 1ifting surface theory.

For simplicity, the effect of steady deformations due to aerodynamic loads
on the flutter boundary is neglected. The error introduced by ignoring the
steady aerodynamic deformations is studied in reference 2 and is shown to be
small enough to produce an approximate flutter point. In particular, the
effect of the steady aerodynamic deformations on the flutter Mach number is
not very significant. Thus, the approximate flutter analysis neglecting steady
aerodynamic deformations is suitable for use in design optimization procedures
requiring repeated efficient execution of the flutter analysis. The optimal
design can be easily checked for the flutter condition by using the refined
flutter analysis with steady deformations and the conventional procedure.

The propfan is assumed to have identical groups of blades symmetrically
distributed about a rigid disk. The linearized aeroelastic equations of
motion are then uncoupled for different inter-group phase angle modes. The
flutter Mach number for the propfan is then the lowest Mach number at which
one of the intergroup phase angle modes becomes unstabte. For a given inter-
group phase angle op, the equations of motion, after modal transformation,
can be written in the form (ref. 3):

[Mg1{d} + [Kgl{q} = [A(M,w)1{q} | M

where [Mg] is the generalized mass matrix, [Kq] is the generalized stiff-
ness matrix, {q} the generalized coordinate vector and [A(M,w)] the general-
ized aerodynamic matrix for a group of blades. The aerodynamic matrix

[A(M,w)] 1is usually valid only for simpie harmonic motion of the airfoil. For
full details of the construction of these quantities, the reader is referred

to references 2 and 3.




For simple harmonic motion,

(a} = {gpre™" 2)

Equation (1) now leads to
(-w2[Mg] + [Kgl - [AMM, @)1 {qg} = {0} (3)

The conventional procedure for obtaining the flutter Mach number and fre-
quency, outlined in references 2 and 3 and illustrated in figure 1 (reproduced
from ref. 2 ignoring the computation of steady deformations due to aerodynamic
loads), is as follows. The aerodynamic matrix is evaluated at an assumed Mach
number and an assumed frequency and then equation (3) is solved for all the
eigenvalues, we. This procedure has been implemented for propfans in a pro-
gram called ASTROP3. In general, these eigenvalues are complex. The real and
imaginary parts of iw represent the effective damping and frequency, respec-
tively. The assumed frequency is varied until it is equal to the frequency
corresponding to the eigenvalue with the least effective damping. This fre-
quency matching forms the inner iteration. When this iteration reaches conver-
gence, the Mach number is varied until the effective damping of the eigenvalue
corresponding to the matched frequency is equal to zero. This forms the outer
iteration. The flutter Mach number and the flutter frequency are obtained at
the convergence of the outer iteration.

The conventional procedure cannot be reliably automated because it
requires the preservation of the identity or ordering of the eigenvalues over
a wide range of assumed frequencies and Mach numbers. Most eigensolution rou-
tines do not compute the eigenvalues in any particular order and the sorting
of eigenvalues by frequency or magnitude does not usually preserve the continu-
ity. Loss of continuity necessitates user intervention and complicates the
automated analysis.

In order to alleviate these problems, a direct solution of equation (3)
viewed as an implicit double eigenvalue problem is proposed and described
below.

DIRECT SOLUTION OF THE FLUTTER EQUATION

When the dependence of the aerodynamic matrix on the assumed Mach number
and frequency is considered explicitly, equation (3) can be viewed as an
impiicit double eigenvalue problem. If Mg is the flutter Mach number and
wfp the flutter frequency, then equation (3) leads to

[(Bl{qg} = {0} (4)

where [B] = -wp2[Mgl + [Kq] - [A(MF,up)]
In general, the aerodynamic matrix [A(Mf,wf)] 1is a transcendental func-
tion of the assumed frequency and Mach number. Mg and wf are the two eigen-

values of equation (4). Only real values of Mg and wf are of interest.
The two eigenvalues Mg and wf are coupled since the aerodynamic matrix is



complex. Cardani and Mantegazza (ref. 21) proposed a direct solution of equa-
tion (4) and a normalizing condition, treating Mg, wg and the components of
{q0} as unknowns. For a nontrivial flutter mode, we have the characteristic
equation

det (-wp2lMgl + [Kgl - [A(Mp,0p)]) = O (5)
Let

o
|

= det (-wp2[Mg] + [Kgl - [ACMF,0p)1)

DR(MF,wF) + iD1(Mf,wf) (6)

where DR and Dy are the real and the imaginary parts of the characteristic
determinant D respectively. Then, at flutter condition,

DR(MF,wf) = 0

N

Di(MF,wf) = 0O

Equations (7) consist of two equations in two unknowns, Mg and wf.
These equations can be solved by any of the methods for solving a system of
nonlinear equations. When equations (7) are solved for Mg and wf, equa-
tion (4) is satisfied and no further iterations are required for the purpose
of matching assumed and computed quantities. This procedure is illustrated in
figure 2. Once Mg and wf are found, inverse iteration can be used to find
the flutter mode.

In contrast to the conventional procedure, the direct solution outlined
here eliminates the need to track eigenvalues to determine the flutter point.
In addition to this important benefit, the double iteration on the complex
eigensolution is replaced by a single solution of a system of two real nonlin-
ear equations. The Mach number and frequency are varied simultaneously in
this procedure rather than one at a time as in the conventional procedure.
Thus the flutter Mach number and the flutter frequency are determined
simultaneously.

The formulation of a transcendental double eigenvalue problem in prefer-
ence to a linear single eigenvalue problem may seem to defeat the objective of
increased efficiency, even if it is more suitable for automation. However,
the price to be paid is not as great as it may seem because the transcendental
eigenvalue problem needs to be solved for only one set of eigenvalues in most
cases, whereas the linear eigenvalue problem has to be repeatedly solved for
all the eigenvalues which equal in number to the number of assumed mode shapes.

NUMERICAL SCHEME FOR DIRECT SOLUTION

Equations (7) may be solved for Mg and wf by Newton's method. The
iterative scheme for Newton's method is

MF Mg DR
= - [JI-! (8)
wF WF D1
(k+1) (k) (k)




where k is the iteration number and [Jk] 1s the Jacobian matrix and is
-given by

D D
kR,MF kR,wF

(3.1 = (9)
K DkI,MF DKI,wF

The Jacobian [Jk] is expensive to compute because the evaluation of the
aerodynamic matrix [Ag] is computationally intensive. Several quasi-Newton
algorithms which approximate the Jacobian in various ways are available. In
the following, a quasi-Newton algorithm is proposed that is more efficient than
the currently available algorithms for the determination of the flutter Mach
number and the flutter frequency. The numerical scheme is based on the hypoth-
esis that approximating the derivatives of the flutter matrix ([Bxl provides a
more accurate approximation to the Jacobian matrix [Jx] than directly approx-
imating the derivatives of the characteristic determinant. The numerical
scheme based on this hypothesis approaches the Newton's method in its superior
convergence characteristics with the same cost per iteration as the secant
method.

The iterative scheme of equation (8) is first transformed in order to
explicitly determine the relation between the derivatives of the characteris-
tic determinant and those of the flutter matrix. This is accomplished by
employing the following remarkable result, known as the Trace theorem, proved
by Lancaster (ref. 22): If the elements of [B(a)] are differentiable func-
tions of a, then for any a for which the characteristic determinant
D(3) = 0,

D,5 = D « trace of ({81-! B1,3) (10)

When & 1is successively set to Mg and wf, equation (10) leads to

Dk,Mp = OkR,Mp + 1DkI Mg = Dk - trace of ([BgI-! [Bk] mg)

an

Dk,wr = DkR,wp *+ 1DKI,wfp = Dk + trace of ([Bg1-1 [Bkl ,p)

The iterative scheme of equation (8) can then be written as

M M
Yo FY o CRMIop ™ Ruug L) (1M Y o

where
(g.MF)k = trace of ([Bk]'][Bk],MF) = (gR,MF + 1gI,MF)k

13)
(?’wF)k = trace of ([Bk]'][Bk]»mF) = (pR»wF + igI’wE)k



The iterative formula of equation (12) does not require the determinant of
the coefficient matrix [Bxk] of the flutter equation (4). However, [Bgl-! is
required to compute 9. M and 9w - The computational cost for the inversion

of [Bkl 1is usually negligible in comparison to that of forming the matrix
[Bk1.

The derivatives [Bk].MF and [Bgl,,r are approximated by following a
reasoning similar to that employed in deriving Broyden's method (ref. 23).

Let AMg = Mp(k-1) - MF(k) and Awk = wfF(k-1) - WF(k)- The derivatives are
approximated in the direction of the last move to satisfy
[(Bk_11 = [Bk] + [Bk],MF - AMy + I:Bk],mF .« Awg (14)

and are assumed to be unchanged in the direction orthogonal to the last move
and this implies

[Bk1.Mp(MF - ME(k)) + [Bk] opwF - wF(k)) = [Bk-11.MpMF - ME(k))
+ [Bk_]],wF(mF - WF(k)) (15)
for any Mg and wf satisfying:
(MF - Mp(k)) * Mg + (wfF - wp(k)) = dwg =0
Equations (14) and (15) are solved to obtain
(B, _;1 - [B DM, + ([B

k—]]’M . Aﬁ)k - [Bk_]],w ¢ AM )Aw

K"k
F F
(8,1 = 16)
kK™ ’M 2 2
F AMk + oy
F F
(B oy, = R an
F AMk + By

It was expected that equations (13), in conjunction with equations (16)
and (17), approximate the Jacobian matrix accurately enough to obviate the
need to update the Jacobian in the entire range of convergence. Results in
the next section show that this is indeed the case for the examples studied,
even when large moves were made during the iteration.

The proposed numerical scheme for direct solution of the flutter equation
is:

(1) Obtain initial estimates Mg(gy and wp(g) for the flutter Mach
number and flutter frequency.

(2) Obtain initial estimates for the derivatives [Bol.yp and [Bpl,.
These are best obtained by computing finite difference approximations.

(3) Compute new estimates Mp¢k,1) and wf(ks+1), K =0, 1, 2,... using
equation (12).




(4) Test for convergence and stop if converged.
(5) Increment K = k + 1.

(6) Compute updated derivatives [BxJ.Mp and [Bgl,, using
equations (16) and (17).

(7) Repeat from step 3.

(BkI-1 from the final iteration of the above procedure can be used in an
inverse iteration scheme to determine the flutter mode at 1ittle additional
cost. Thus, if {qor} 1is the required flutter mode and {v} 1is any vector
that is not totally deficient in {qor}, then the following inverse iteration
scheme is used to obtain the flutter mode:

{aorhy = (B1-1{v}
{doF}me1 = [B]‘]{qOF}m, m=1, 2,... (18)

Normally, one step of the inverse iteration scheme is sufficient to obtain
flutter mode within a reasonable accuracy.

RESULTS AND DISCUSSION

To demonstrate the current procedure, flutter boundary calculations were
performed for two configurations of propfan rotors described in references 2
and 3. The first configuration consists of eight identical blades, designated
SR3C-X2, made of graphite-ply/epoxy-matrix material. The second configuration
is an alternately mistuned rotor with eight blades. The rotor was constructed
by alternately mounting two sets of composite blades. The first set of four
blades, SR3C-X2, are the same as those on the rotor of the first configuration.
The second set of blades, SR3C-3, are identical to the first set except for the
ply angles of the composite material. For details on the blade models, the
reader is referred to references 2 and 3. In this report, the first configura-
tion is called the tuned rotor and the second configuration the mistuned rotor.

To validate the current procedure and the computer program, flutter bound-
aries were calculated at various rotational speeds for both the tuned and mis-
tuned rotors. Convergence was considered to have been obtained when the
solution did not change to four significant digits in successive iterations.
During the iteration process, the value of the Mach number sometimes turned
out to be supersonic at the tip. No aerodynamic analysis can be performed at
such Mach numbers using the current aerodynamic model. When such intermediate
solutions (including those involving negative Mach numbers) arose, the move
length was cut in steps of 80 percent until an acceptable Mach number was
obtained. This technique was found to be effective in driving the solution to
the desired range without an excessive penalty in the number of iterations.
The results obtained with the present procedure starting with various initial
guesses are compared with the "exact" flutter boundaries obtained using the
conventional procedure, at two rotational speeds each for tuned and mistuned
rotors. The flutter boundaries are in excellent agreement for these cases,
thus validating the accuracy of the procedure and the convergence criteria.



The typical progress of iteration, for the initial guesses for flutter
Mach number and flutter frequency of 0.5 and 310 Hz respectively, with the
present direct solution procedure and the conventional procedure, is shown in
table I. Note that the conventional procedure relies on user interaction and
judgment. The progress of iteration shown for the conventional procedure is
typical. The current procedure, in addition to being suitable for automation,
is also more efficient as evidenced by the considerably smaller number of
analysis steps. Thus both the CPU time and analyst man-hours are considerably
reduced using the present procedure.

To judge the accuracy of the approximate Jacobian, the nonlinear equa-
tions (7) were solved by Newton's method, the present numerical procedure and
by alternate quasi-Newton methods such as the multi-point secant method
(ref. 24) (implemented in IMSL routine ZSCNT), modified Powell's algorithm
(implemented in IMSL routine ZSPOW) and by Broyden's method (ref. 23). For the
cases tested, the present procedure outperformed all three alternate methods
in terms of efficiency. Figures 3, 4, and 5 illustrate the convergence behav-
ior of the current procedure in comparison to Newton's method and the multi-
point secant method. For the cases shown, the "exact" flutter Mach number was
0.641 and the "exact" flutter frequency was 294 Hz. Even though the character-
istic determinant Dx 1is never calculated in the current procedure, the varia-
tion of the absolute value of Dk with each iteration is shown in figure 3 for
comparison with the Newton's method and the secant method. The initial values
for Mf and wf were 0.65 and 330 Hz respectively. The determinant value has
been scaled so that 1.0 ¢ |Dg| < 10.0. It is seen that the iteration history
using the current numerical procedure closely resembles that of the Newton's
method indicating the accuracy of the approximation proposed here for the
Jacobian matrix. In contrast, the secant approximation for the Jacobian

matrix almost doubles the number of iterations required for convergence in
this case.

The range of convergence is an important factor in any iterative proce-
dure since it has an important effect on how closely the initial solution must
approximate the final solution. Figure 4 shows the number of flutter matrix -
evaluations required for convergence for various initial guesses for Mg and
a fixed initial guess for wf = 310 Hz. The range of Mach number convergence
is seen to be from Mg = 0.2 to Mg =0.8. Figure 5 similarly shows the
number of flutter matrix evaluations required for convergence for a fixed ini-
tial guess for Mg of 0.65 and various initial guesses for wfg. The frequency
range of convergence with the current procedure, wp = 230 Hz to wf = 350 Hz,
is seen to be slightly larger than that with the secant method. From these

figures, it can be stated that the present procedure has a large radius of
convergence.

The results obtained show that a fair initial guess would converge to the
"exact" flutter point at the expense of about 5 to 10 flutter matrix evalua-
tions. Table II shows the CPU times on the CRAY-XMP that were required to
obtain the flutter boundary for the case of a good initial guess and a poor
initial guess. The CPU times for one flutter eigenvalue analysis at a given
set of Mach number and assumed frequency are also shown for comparison. With
a good initial guess, the flutter Mach number and the flutter frequency can be
obtained for two or three times the cost of a single eigenanalysis. The
present procedure is much less expensive in terms of CPU time as well as ana-
lyst's man-hours than the conventional procedure, even though precise compari-
sons have not been made. However, the primary motivation for the current
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procedure has been the feasibility of automation rather than the computational
- expense.

The current procedure may not find the lowest flutter Mach number, if more
than one structural modes were to flutter in the Mach number and frequency
range of interest for the selected intergroup phase angle mode. Under these
circumstances, one will be forced to search the entire range of interest for
the roots of the equations (7) starting with different initial guesses and this
is not amenable to an efficient automated procedure. However, it is expected
that such is rarely the case for tuned or alternately mistuned propfans. This
is not a major limitation for two other reasons: (1) the frequency interval in
which flutter speeds occur is usually determined early in the design phase and
(2) the search domain can be considerably reduced after a few orientational
runs.

CONCLUSIONS

A direct solution of the equations of motion is demonstrated to be a reli-
able automated flutter analysis procedure if steady aerodynamic deformations
are ignored. The direct solution method replaces the inner-outer iteration
loop of the conventional procedure by a single iteration loop. A numerical
procedure, based on an accurate and efficient approximation to the Jacobian
matrix, is presented. The procedure is straight-forward in concept and results
for test cases show good convergence properties. Since the procedure is itera-
tive, it is particularly suitable for design optimization. This is because,
as the optimal design is evolved, the flutter solution is expected to change
incrementally from design to design, so that the previous solution provides
good estimates for the current solution.
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TABLE I. - PROGRESS OF ITERATION
[Q = 5280 rpm, 30.75R = 6].'6°, op = 225°.]

Count | Conventional procedure | Present procedure
M ®, M W,
Hz Hz
1 0.500 310.0 0.500 310.0
2 .500 267.5 .499 310.0
3 .500 268.9 .500 313.0
4 .500 268.9 700 289.7
5 .700 268.9 .590 287.7
6 .700 299.8 .641 293.6
7 .700 298.9 .642 294.1
8 .700 298.9 .641 2941
9 .616 286.3 2. 641 294.1
10 .616 290.1
1A .616 290.5
12 .616 290.4
13 .640 292.9
14 .640 293.9
15 .640 294.0
16 .641 293.9
17 .641 294.1
18 2,641 294.1
4Converged.

TABLE II. - CPU SECONDS FOR AUTOMATED FLUTTER ANALYSIS

Eigensolution Direct solution to find
at a single Mg and wf
set of .

M and o Good Poor
initial initial
guess? guess?

Tuned rotor® - 8 blades; 4,332 10.356 22.146
6 modes/blade; 5280 rpm; (M =0.70 (M =0.45
Op = 225° w = 310 Hz) w = 340 Hz)
Mistuned rotor® - 8 blades; 10.020 22.084 31.970
4 groups; 2 modes/blade; (M = 0.65 {M = 0.5
5190 rpm; o, = 90° @ o 310 Hz) | @ = 340 Hz)

4Initial guesses are given in parentheses.
bugxact" Mp = 0.641 and "exact" wp = 294 Hz.
CtExact" Mg = 0.718 and “"exact" wp = 285 Hz.
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CHANGE Mg

INPUT: ROTATIONAL SPEED, BLADE GEOMETRY(IES)

RUN FINITE ELEMENT PROGRAM TD GET STEADY STATE
GEOMETRY UNDER CENTRIFUGAL LOADS

l

RUN FINITE ELEMENT PROGRAM TO GET FREQUENCIES
AND MODE SHAPES OF INTEREST

ASSUME Mg, 0p

ASSUME W
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I FORMULATE AND SOLVE THE COMPLEX EIGENVALUE PROBLEM l

CHANGE wp

'

DOES ASSUMED
FREQUENCY EQUAL COMPUTED
FREQUENCY?2,

NO IS EFFECTIVE

DAMPING ZERO?

FIGURE 1. - CONVENTIONAL PROPFAN FLUTTER ANALYSIS.
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FIGURE 2. - AUTOMATED PROPFAN FLUTTER ANALYSIS.
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FIGURE 3. — VARIATION OF THE ABSOLUTE VALUE
OF THE DETERMINANT WITH ITERATION NUMBER
(Q= 5280 RPM, Bo.75R= 61.6%, Or=225%).
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FIGURE 5. - CONVERGENCE OF DIRECT SOLUTION
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FREQUENCY.
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FIGURE 4. - CONVERGENCE OF DIRECT SOLUTION
FOR VARIOUS INITIAL GUESSES AT FLUTTER
MACH NUMBER.
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